Greg Chaitin, Computer Programmer

Rocky Bernstein

As a friend of Greg Chaitin, and an avid follower and reader of his writings, one thing that strikes
me is that there is very little mentioned about the 25 years or so that he spent at IBM, most of
it at IBM Research. Perhaps the situation is analogous to that of Archimedes[Wiki, 2020]. His
mathematical works are well preserved, but we don’t really know the extent of his considerable
practical engineering and invention.

Greg started out as a IBM Service Engineer in Argentina and I came to know him when he
worked at IBM Research.

We worked on a compiler[Auslander and Hopkins, 1982a][Auslander and Hopkins, 1982b][Wiki, 2020]
for IBM’s first RISC, then called 801[Wiki, 2020a]. It later became known as the POWER
architecture[Wiki, 2020b].

The work he did on that project was first rate and I learned a lot from him about writing code.
Some of this is described below. In addition, he used insightful algorithms. You can find a little
bit about his work on the register allocator in a couple of papers[Chaitin et al., 1981][Chaitin, 1982].
These papers have become the standard references whenever something describes register allo-
cation by graph coloring, which is called Chaitin-style graph coloring.

The papers convey the elegance of the idea but, having studied the working code as it appeared
inside the compiler, I don’t think they do justice to the underlying engineering or volume of
output Greg produced when I had the pleasure of working with him on that project.

It is surprising there is not more about this period in biographical or autobiographical writings,
and I would like to address that here.

A little background.



I started working at IBM Research right after getting a masters’ degree. Although I had worked
as a programmer and written code in school and on part-time jobs, this was my first full-time
job at any large company. The project I worked on was an optimizing compiler. The code
was hundreds of thousands of lines long, written by maybe a dozen people over several years.
This kind of scale is still true for many compilers and interpreters. The “optimizing” part of
“optimizing compiler” means that clever techniques are applied to make the code run fast.

Needless to say in any such endeavor of this size there is bound to be a lot of chaos. Here is an
example that I encountered in watching a bug get fixed.

Before Greg’s involvement, after the input source program was parsed, information was mostly
managed in expression trees. The structure for an expression node could have a number of fields.

The compiler also consisted of a number of “phases,” as found in many compilers. In particular,
the phases were:

—_

. A parse phase
2. A code-improvement phase
3. A register-allocation phase

4. A final assembly to machine-code phase

One day, a bug turned up because a field that was needed in the final assembly phase got
mangled. That field was called “ppb” for “phil’s private bits.” Phil worked on the parse phase.

Peter, who worked on the code-improvement phase, occasionally needed to store a bit of in-
formation for his purposes. He figured that since his phase came after Phil’s phase, he could
do a little code optimization of his own and reuse phil’s private bits since, as he put it, Phil
wasn’t looking. That way he wouldn’t have to add another temporary field which would make
the expression-tree structure larger and more unwieldy. So “phil’s private bits” became “peter’s
private bits” when Phil wasn’t looking.

Unfortunately Hank, who worked on the final assembly phase, needed the information stored in
phil’s private bits. So, phil’s private bits weren’t as private as Phil or Peter thought. This is
the kind of chaos that was common for a code base of this size.

Greg’s phase, affectionately known as Phase III, was the register-allocation phase. When I
studied Greg’s code in order to take over the phase, I was amazed at how clean, efficient and
elegant it was. Not at all like phil’s/peter’s private bits. At one point, I thought I could come



up with an improvement, only to find that, even though it hadn’t been mentioned in the papers
describing the code, it was already implemented.

The first thing that struck me about Greg’s code was that it followed the kind of formalism
found in physics equations. Physics often uses short names in a particular domain. For example
E, m and ¢ in E = mc?; this code was like that. There was a short and consistent notation
for program variables that represented all registers, another for a single register, an idiom for
looping over a register, and so on. This was very different from the rest of the code base.

In contrast to the looseness described in the Phil/Peter bug, there was strict consistency, clarity,
succinctness, and focus on purpose which was applicable generally. This was the first time I had
encountered code that exuded a sense of art rather than the typical robotic engineering that I
was familiar with and pervaded the rest of the code.

As 1 said, the algorithm behind the register allocation can be found in a couple of papers.
However what you won’t find printed anywhere is a description of the excellent engineering that
made this work. So I'd like to describe this next.

To support working on the register-coloring algorithm, Greg invented a register-transfer language
and its display format. It has a couple of features not found in many register-transfer languages,
such as a way to indicate that an instruction has more than one output. For example the IBM
360/370 multiplication instructions would set a pair of registers when the operation completed.
So in the register-transfer language, both of these registers were on the left-hand side of an
assignment statement. If an instruction, like ‘add’, set a condition bit such as ‘carry’, that bit
was indicated as well. When a register went “dead” [Wiki, 2020c]—the last time a value from
that register was used—it had a tick mark after it.

All of this was needed in the register-allocation process, and the concise and precise language
Greg invented for this purpose made it very easy to understand what was going on and how
registers got allocated or “colored.”

Nowadays, it is not uncommon in compilers to transform the tree representation that comes out
of a parser (Phase I) into a register-based representation. But circa 1982 it was not a widespread
practice. Greg’s work predates the invention of Single Static Assignment, or SSA, which followed
shortly afterward at IBM, presumably under Greg’s influence. Both promoted the proliferation
of register-based intermediate languages.

Greg’s work was contemporaneous with the first edition of the Dragon Book[Aho, 1977] which
popularized this idea Compare this with the earlier books by David Gries|Gries, 1977] or

!The first edition described a register allocation scheme that was suited for stack-architecture CPUs. Later
editions of this book switched to describing the register allocation scheme that Greg developed.



McKeeman et al.[Mckeeman et al., 1970]. In the 1970s, there were several compilers that worked
off of a tree representation. Some interpreters, such as those for Lisp, Perl5, or Korn shell, still
work off of expression trees.

When Greg joined the project, the final assembly phase, Phase IV, used the expression trees
built in Phase I, so there was quite a bit of engineering and coding that Greg had to do to
convert the expression trees into his register-transfer language. And since the assembly phase
still used those trees, when I started there was work to convert the results back into expression
trees after coloring so that Phase IV could do its work. That idea that you could wall yourself
off from the surrounding chaos blew my mind, but by doing so Greg had created a little corner
of the world with order in the middle of a big mess.

Eventually, Greg convinced Hank, the person who worked on the phase after Greg’s phase, to
use his more elegant register-transfer language to drive final assembly. Hank told me that in
doing so, his code got a lot better, simpler, shorter, and easier to maintain.

I have used the technique of coming up with an elegant or more appropriate representation
and language in which to think and describe things in, even if it means writing additional and
messy engineering code to do transformations both into and out of your language. Each time
this comes up there is great benefit. I am grateful to Greg for adding this technique to my
programming arsenal. In algorithms you sometimes find this idea in conjunction with, say, the
Discrete Fast Fourier Transform. However it is not something usually mentioned in conjunction
with programming.

This kind of elegance and simplification was not an isolated incident, but part of the fiber of
Greg’s programming. Here is another example.

After this work was completed, Greg embarked on a totally different aspect of the compiler, the
binder, sometimes called a linker. This is a piece of code that is needed after the source code is
compiled into machine code and just before running or loading the code. It adjusts the code so
that it can work in an arbitrary section of computer virtual memory.

To do this, the compiler needed to be modified so that it used only those instructions that were
position-independent. Nowadays this is called PIC (Position-Independent Code)[Wiki, 2020].
In other words, certain instructions or instruction formats had to be avoided. These typically
include the “absolute address” forms of the “load from memory” and “store from memory”
instructions.

The first versions of Greg’s binder started out by more or less following what some other clever
IBM Researchers, notably Chris Stephenson, did to perform this process on conventional IBM
System/370 hardware. In the beginning Greg probably knew no more about this process than



any casual programmer would. He finished a preliminary version of the code which worked and
reflected his understanding of Chris’s code for the 370. It was probably more or less a translation
of that code adapted to the new hardware instructions and architecture.

However after this was completed and working, he had an epiphany—the process of binding
together a set of machine code fragments could be thought of as a data-dependency driven
process which uses a topological sort to pull everything together followed by a garbage-collection
process that removes those parts of the code fragments that are bundled in “object decks” but
aren’t needed for the particular program that is being bound together.

At this point he discarded his thousands of lines of code and rewrote everything from scratch in
a couple of days! I had never heard of anyone doing such a thing.

The end result was, of course a very concise and clean piece of code. Getting this code adapted
into IBM’s product engineering went pretty quickly. Most of the things that came out of IBM
Research needed significant rewriting before they would be considered by the Product team, but
this was not the case here due to its usefulness, simplicity and elegance. It became known as
IBM’s TOC binder[IBM, 2020].

One other incident in conjunction with the TOC binder attests to its unity of purpose and
simplicity.

One day I happened to be in Greg’s office. Usually, everyone worked on a bullpen that had 6-8
terminals in it. (Unix was developed in such an environment, too.) Before the days of IRC and
Slack, a bullpen like this had the same effect. If you had a problem, you’d just blurt it out.
Someone might hear you and quickly tell you what was going on.

However we also had private offices. Greg’s office, like his code, was free from clutter. It consisted
of a single terminal on a desk otherwise empty except for a phone. A single framed picture hung
on the wall. Nothing more.

I had dropped by there and Dick, who was working on a database for our operating system,
came in to describe a problem he had encountered. Just as Sherlock Holmes would do, Greg
faced Dick the entire time, listening intently and quietly. After that, there was a pause of about
30 seconds as he reflected. Then after asking a few questions, he offered a theory of what might
be wrong. With a couple of clicks on the terminal he brought up a file, just one small part of
the rather substantial code. In a couple of clicks more, he found the problem spot. The whole
process took less than 5 minutes.

It was amazing to me that he figured out the bug completely without having run the code
even once. In order to verify that his theory and fix were correct, the code had to be run, but



that came later. This kind of bug fixing is something I have rarely encountered. The fact that
something like this can be done at all I attribute to the simpleness, cleanness and overall good
organization of the code. He could reason about its behavior without having to run it.

My last example of clean concise code is published.

Greg wrote computer simulations for five well-known physical models[Chaitin, 1985]:

a satellite going around the Earth according to Newton,

e propagation of an electromagnetic wave according to Maxwell,

the same satellite going around the Earth according to Einstein,

an electron moving in a one-dimensional potential according to Schrodinger, and

e sums over all histories according to Feynman.

Each of these simulations fits on a single page of APL2 code. This includes setting up the data
and drawing plots of the output. In fact this code was so short and elegant that for a while
several of the 30-line simulations replaced the picture that had been hanging in his office.

References

[Aho, 1977] Aho, Alfred V. and Ullman, J. (1977). Principles of Compiler Design.
Addison-Wesley, New York.

[Auslander and Hopkins, 1982a] Auslander, M. and Hopkins, M. (1982a). An overview of the
PL.8 compiler. In Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction,
SIGPLAN ’82, page 22-31, New York, NY, USA. Association for Computing Machinery.

[Auslander and Hopkins, 1982b] Auslander, M. and Hopkins, M. (1982b). An overview of the
PL.8 compiler.

http://rsim.cs.uiuc.edu/arch/qual_papers/compilers/auslander82.pdf. On-line
pdf.

[Chaitin, 1982] Chaitin, G. J. (1982). Register allocation and spilling via graph coloring. In
Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction, SIGPLAN ’82,
page 98-105, New York, NY, USA. Association for Computing Machinery.


http://rsim.cs.uiuc.edu/arch/qual_papers/compilers/auslander82.pdf

[Chaitin, 1985] Chaitin, G. J. (1985). A computer gallery of mathematical physics—a course
outline.
http://www.softwarepreservation.org/projects/apl/Papers/ComputerGallery.

[Chaitin et al., 1981] Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J., Hopkins,
M. E., and Markstein, P. W. (1981). Register allocation via coloring. Computer Languages,
6(1):47 — 57.

[Gries, 1977] Gries, D. (1977). Compiler construction for digital computers. Wiley, New York.

[IBM, 2020] IBM (2020). Overview TOC AIX.
https://www.ibm.com/developerworks/rational/library/overview-toc-aix/index.html.

Accessed 2020-11-13.

[Mckeeman et al., 1970] Mckeeman, W. M., Horning, J. J., and Wortman, D. B. (1970). A
Compiler Generator. Prentice-Hall.

[Wiki, 2020] Wiki (2020). Archimedes. https://en.wikipedia.org/wiki/Archimedes.
Accessed 2020-11-13.

[Wiki, 2020a] Wiki (2020a). IBM 801. https://en.wikipedia.org/wiki/IBM_801. Accessed
2020-11-13.

[Wiki, 2020b] Wiki (2020b). IBM POWER microprocessors.
https://en.wikipedia.org/wiki/IBM_POWER_microprocessors. Accessed 2020-11-13.

[Wiki, 2020c] Wiki (2020c). Live variable analysis.
https://en.wikipedia.org/wiki/Live_variable_analysis. Accessed 2020-11-13.

[Wiki, 2020] Wiki (2020). PL/8. https://en.wikipedia.org/wiki/PL/8. Accessed
2020-11-13.

[Wiki, 2020] Wiki (2020). Position-independent code.
https://en.wikipedia.org/wiki/Position-independent_code. Accessed 2020-11-13.


http://www.softwarepreservation.org/projects/apl/Papers/ComputerGallery
https://www.ibm.com/developerworks/rational/library/overview-toc-aix/index.html
https://en.wikipedia.org/wiki/Archimedes
https://en.wikipedia.org/wiki/IBM_801
https://en.wikipedia.org/wiki/IBM_POWER_microprocessors
https://en.wikipedia.org/wiki/Live_variable_analysis
https://en.wikipedia.org/wiki/PL/8
https://en.wikipedia.org/wiki/Position-independent_code

