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Abstract

Decompiling is often used in conjunction with recovering lost source code, or in reverse-engineering code when we do not
have access to the source.
Here we describe a novel use: places where accurate position reporting, even in the presence of optimized code or where

source code is not available, could be helpful. Examples include tracebacks, debuggers, core dumps and so on. Also new is
using decompilation to assist debugging at runtime.
We show how more conventional methods of source-code reporting are vague and ambiguous. Although effecting a per-

vasive change in a compiler is arduous and error-prone, a decompiler can be developed somewhat independently.
However, for the vast number of programming languages, decompilers do not exist. This is true even for dynamic inter-

preted languages where there is little going on in the way of “compilation.” Traditionally, decompilers are labor intensive and
ad hoc, and their construction might also be unfamiliar. So this paper shows how to ameliorate these problems by describing a
pipeline for writing decompilers for dynamic languages that we hope will become standard in the same way that the pipeline
from the Dragon Book [2] has.
Our pipeline differs somewhat from the standard compiler pipeline and from earlier decompiler pipelines [14, 17]. The

differences may lead to further avenues of research and practice.
We use a grammar-directed parsing of instructions with an ambiguous grammar to create a Syntax Tree that, at the top-

levels, resembles that of the source-code AST. However it isn’t abstract in the sense that sometimes, all of the instructions
(tokens) may need to be kept. This is helpful in error reporting.

An ambiguous grammar can give an exponential number of derivations on certain likely input sequences, and we describe
techniques to deal with this issue.
Finally, we describe issues around developing and maintaining a Python bytecode decompiler, which handles the Python

language spanning 15 releases over some 20 years.
We hope to encourage the incorporation of decompilation into tracebacks, debuggers, core dumps, and so on.



1 Problems with Existing Methods for Location Reporting, and a Solution

Reporting a line number as a position in a program can be vague. Consider the following Python code:

x = prev[prev[p]]

...

If we get the following Python error at runtime:

IndexError: list index out of range

a line number, and possibly method name or path, will be reported. But which index caused the problem?
Or consider possible runtime errors in these lines:

x = a / b / c # which divide?

# which index?

[x[0] for i in d[j] if got[i] == e[i]]

return fib(x) + fib(y) # which fib?

# code created at runtime

exec(some_code)

As seen in the last example, there are problems with functions like eval() which evaluate either a string containing a
program-language fragment, or which evaluate some intermediate representation of a program such as an Abstract Syntax
Tree or a code object. In these cases, the program is created at runtime, either from strings or from method calls which create
AST objects and, either way, there is no file containing source code as a stream of characters.

The Pos type in Go’s AST is more informative in that it encodes the line number, file name and column number all very
compactly as an opaque index [4]. Even better, though, would be to extend this to an interval or a beginning and ending
position. Go’s implementation cleverly takes advantage of a sparseness property: the number of interesting locations in a
program, whether a single point or a pair of points, is much smaller than the program’s total number of bytes. Therefore it is
practical for single integer to index into a small table whose entries have a lot of information.
Long experience has shown that trying to get compilers and interpreters to add more precise location correspondences such

as interval ranges, is an uphill battle. The Go implementers resist extending a Pos type to cover interval positions because of
their fear that the line/column approach already slows down compilation.
Just adding a column position to a compiler that lacks this is, in truth, is disruptive and likely to introduce errors. The LLVM

project, a later competitor of the GNU Compiler Collection (GCC), provided a column position on parser errors. However, it
took years before a corresponding change was added to GCC as well. Column position tracked at runtime is just as useful as
at parse time.
Even when both a line and column number are indicated, there is still ambiguity. Consider a language like Perl or Ruby

where parentheses in a function call is optional (if unambiguous). Suppose there are functions f() and g() which don’t take
any argument, and we get this report:

f g

^

Is the problem:

• accessing f with the result of g, or
• accessing result of f, or
• preparing the g call, or
• something else?

We have observed several fruitless discussions with compiler writers wavering over which single line number to use for a
particular instruction when there are several natural choices. Furthermore, different languages arbitrarily decide differently.
In Python, an instruction that loads a string which spans many lines in the source code, such as a triple-quoted string, is
associated with the location of the source-code line where the string ends. In Ruby, however, the location recorded is the line
where the string starts. This arbitrariness could be avoided by simply giving the interval that the string spans.

For the examples given at the beginning of this section, the trepan3k[6] gives the following information, among other
things described below:

x = prev[prev[0]]

https://golang.org/pkg/go/token/#Pos


--------

x = prev[prev[0]]

-------------

[x[0] for i in d[j] if got[i] == e[i]]

----

[x[0] for i in d[j] if got[i] == e[i]]

----

[x[0] for i in d[j] if got[i] == e[i]]

------

[x[0] for i in d[j] if got[i] == e[i]]

----

x = a / b / c

-

x = a / b / c

-

This kind of precision in location reporting is common in tree-based interpreters. It is also found in some educational
or teaching interpreters and IDEs with debuggers. Lisp interpreters evaluating lambda-expressions often have this kind of
precision, or can without much difficulty.
What is new here is reconstituting a tree from instructions at runtime so we can have this information at hand. In other

words, this is like a JIT for debugging position information.
There still is the fundamental and insurmountable problem of trying to associate a machine instruction with a source-code

position, because there is a many-to-manymapping between instructions and source-code constructs. We have a similar prob-
lem in translating between human languages. If we translate “templado” as “not hot and not cold,” which part of “templado”
corresponds to “not hot” and which part to “not cold”? At the level of a word there can sometimes be no corresponding compo-
nent in the translation. In CPython bytecode, the scope-changing instruction POP_BLOCK is like the “not”s in the translation
of “templado”.
Although this problem is inherent, in practice we can do much better via decompilation. In addition to the spanning ranges

shown above, we also give a grammar-based construct, like array_subscript and its context.
The instruction itself can also be helpful. In the example above with fn(), if the instruction is loading the method name fn

or is at an instruction immediately before the CALL instruction, then we are before the call.1 If instead the CALL instruction is
found in a backtrace, then we are in the middle of running the call. Finally, if we are at an instruction immediately after the
CALL instruction, then we are probably in the process of using the return value of the call.
All of this is done without modifying the compilation process. We do have to hook into the runtime environment, but only

at the point of an exception, which is usually easier than changing the runtime or adding additional information. Often the
language has in place a callback-hook mechanism for handling runtime exceptions.
Since this is done as a separate, isolated section of code, or perhaps an external module, we can give a very precise location

without slowing down compilation or bloating the runtime system. Even more, the position is not just a range of text in the
source code, but it can also be associated with grammar constructs.
In sum, the solution given here handles the problems enumerated above:

• ambiguity of location,
• source does not exist as text, and
• invasive changes to compiler and runtime environment

We close this section with another example, using the Python debugger uncompyle6 [6] which decompiles at runtime. For
this simple-minded Fibonacci function:

def fib(a):

if a < 2: return 0

return fib(a-1) + fib(a-2)

here is an example of the interaction with the debugger, showing positions:

1See [21] for a description of Python bytecodes; however for formatting reasons we shorten the CALL_FUNCTION instruction name to CALL.



(/tmp/fib.py:1): fib

-> 1 def fib(a):

(trepan3k) up

(/tmp/fib.py:3 @30): fib

(trepan3k) backtrace

##0 fib(a=0) called from file 'fib.py':1

->1 fib(a=2) called from file 'fib.py':3

##2 <module> exec()

'/tmp/fib.py' at line 5

(trepan3k) deparse -p

instruction: 30 CALL_FUNCTION_1 1

grammar LHS: call_function

return fib(a - 1) + fib(a - 2)

----------

Contained in...

Grammar Symbol: binary_expr

return fib(a - 1) + fib(a - 2)

-----------------------

We went an entry up in the call stack. The output of running the deparse command gives us:

• The instruction where we are stopped. In the example above, it is the CALL_FUNCTION instruction;
• The source-code text associated with this; and
• The larger context which is a binary_expr, here an addition.

Debuggers for Python 2 [12], Python 3 [6] and Perl [8][9] all have commands which make use of this technology.

2 A Deparser Pipeline for Dynamic Languages

Most programming languages lack a decompiler, or at least a good one, although there seems to be a constant need for them.
Besides the novel use described in the last section, decompilers are popular in the reverse engineering and vulnerability testing
communities for obtaining source code when none is available.
In the technology of programming languages, a number of things have changed in the last couple of decades which make

writing decompilers easier:

• Many dynamic languages interpret rather than run binary code. Some of these are somewhat (but not totally) general-
purpose interpreters, such as JVM[24], which work at a higher level than machine code.

• Others of these have tree evaluators so the structure is present at runtime (examples: Perl[19], Ruby 1.8 and Korn shell.)
• Finally, others have bytecode interpreters with instructions which are custom to the language that a decompiler can
make use of (examples: Python[21], Lua[28, 29], Emacs Lisp)2

• There is very little in the way of translation or “compiling” from the source code to byte code or tree representation
that is used at runtime. Often the code generation is done in a single pass in a single program file, which limits the
complexity of the translation.

• Improvements have been made to general context-free parsers which allow them to run fast (in linear time with a low
constant overhead).

In this section we describe the plan of a pipeline for a decompiler which we feel will fit the many interpreted dynamic
languages such as those listed above.
Figure 1 compares a proposed decompiler pipeline used in the uncompyle6 [13] and Emacs Lisp decompilers, to the con-

ventional Dragon Book pipeline. The dashed lines show correspondences between phases of the two pipelines. Dotted boxes
show phases that are optional.
One reason we show the pipelines is to relate the correspondence of the part of the pipeline that many compiler people

resonate with, the grammar parsing. In understanding uncompyle66’s predecessor, this aspect caused me the most confusion
because the authors used conventional compiler terms like “scanner” which I wrongly associated with some sort of conven-
tional regular expression character scanning mechanism.
There are some small but important differences between a compiler and an instruction-based (or non-tree based) decompiler,

namely:

2For many of these languages, there are several different VM interpreters.
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Figure 1. Decompiler vs. Dragon-Book Pipeline

• We do not start out with program text but executable instructions of some sort.
• We can assume that what we are given is correct, which means ...
• We do not have to understand everything completely. For example we can ignore bookkeeping instructions (popping a
stack value to make it match a join with another branch).

• We do not have to perform type checking

In what follows, we discuss these specific phases and their difference from “conventional” pipelines:

• program loading and instruction disassembly
• token massaging, e.g., to speed up parsing and to detect control flow
• parsing using an ambiguous grammar. Custom grammar rules may added; further checks at potential reduction to
disambiguate. Also, the tree generated by the parse must preserve all instructions if we want to be able to show text
correspondences for each instruction

• macro un-expansion when the language has macros or, more generally, high-level source code rewriting.
• recreating source text; mapping instruction offsets to fragments of text when exact position information is desired

2.1 Loader/Disassembly Phase

As shown in figure 1 we correlate this phase with Lexical Analysis in a conventional compiler pipeline.



In conventional compiler technology we scan characters and build up tokens, like identifiers or strings. Tokens have an
additional attribute like 5 for a number token or “mango” for a string token.
In our decompiler, tokens are decoded or symbolic forms of assembly instructions. Getting to the stage where there is a

sequence of instructions is straightforward but can require a number of steps. Either object code is read from some bytecode
or object file and “unmarshaled” into Python objects, or code is already loaded into memory. In any case, after that a stream
of bytes generally has to be decoded by unpacking the stream into instructions which are then further broken up by looking
up opcodes, computing jump addresses, and extracting symbolic names for operands. The whole process is similar in spirit
to regular expression parsing in that, however involved, the overall time complexity is approximately linear.
At the end of this process, there is a stream of instructions, grouped by modules, classes, files and/or functions, possibly

in some hierarchical way. For each instruction there is its opcode name, its operands and possibly other information. The
resulting stream of instructions corresponds to a stream of tokens in a conventional parser. In some rare cases this can be fed
directly into a parser. More often, it needs some additional massaging.

2.2 Massage-Instruction-Stream Phase

As shown in figure 1 this phase does not have a counterpart in a conventional compiler pipeline.
Except in rare cases, decompilers cannot simply take the output of a disassembly and feed it to a parser. Instead they must

modify the instructions to make ambiguous parsing possible and more efficient, for two broad reasons:

• to reduce the number of parses
• to make it possible to detect structured control flow via parsing

In our decompiler for Emacs Lisp, in this phase we add instructions that mark basic blockswhich do not leave the evaluation
stack at the same depth as it was on entry to the block. This happens when that basic block is part of some larger sort of
compound structure which does conserve stack entries. Adding a pseudo instruciton allows the grammar to detect that larger
compound.

2.2.1 Grammar Ambiguity

Decompilation resembles human-language translation in three ways. There are generally many valid translations. Further-
more, judgment of their quality is subjective (except when a retranslation is exact, which is often the case in certain dynamic
languages). Finally, a translation might not need to be exact to be useful.
In many programming languages, nested if’s are semantically equivalent to a single if statement with short-circuit and

expression. That is:

if (condition1) {

if (condition2) {

....

};

}

is the same as:

if (condition1 && condition2)

...

};

}

A decompiler can sometimes determine which form was used in the source code by using idiosyncrasies of the compiler.
In many interpreters, since there is very little in the way of compilation and analysis, there are two constructs and the
template for these will be different in order to cover the most generic situations. Even though the templates are different,
after instantiation the semantics are often the same.
In CPython for example, the if blocksmay have additional scope-setup instructions, whereas a short-circuit and expression

does not use these instructions. Also, CPython sometimes leaves dead code around as the remnants of a template which had
empty parts. uncompyle6 takes advantage of such situations and matches the templated dead code when it arises.
But in general, a decompiler is better served by coping with the multiple equivalent translations. This suggests that the

grammar which transforms instructions into source code is ambiguous.
Traditionally, general context-free grammars have been discouraged or have gotten little coverage in compiler books. A

number of compiler books [1, 2, 33] mention the Earley parser algorithm only in end notes.



In the last decade or so, there has been a rise of Parsing Expression Grammars (PEG)[18] and it has been shown that parsers
for context-free grammars can be made efficient [25, 32].
There is however a new kind of problem which arises when working with ambiguous grammars: limiting the number of

valid parses.
This problem generally does not arise in conventional compilers because it is desirable that unique source texts have unique

derivations. Therefore, compiler writers produce grammars which are designed to have that property, i.e., grammars which
are unambiguous. In contrast, in our Alice-Through-the-Looking-Glass world we start from a set of instructions which are
presumed to be valid, and the decompiler writer needs to come up with a grammar which covers that. It is even fine to have
a grammar that accepts sequences of instructions which can never exist in practice. In sum, ambiguous grammars make it
easier to get coverage.
But whenwe say, for example, that an Earley parser has timeO(n3), we mean that the time for a single derivation is bounded

byO(n3). If there is an exponential number of derivations, then the time could conceivably be super-exponential.
Certain kinds of simple grammars can have an exponential number of derivations. To see this, consider the following simple

context-free (and non LR- or LL-) grammar:

E ::= E E | a

On a string of n a’s for n > 1, there are 2n − 1 ways to derive that string. At each step we can decide to expand the first or
the second E. So, for number of derivations T (n) we have:

T (1) = 1 (1)

T (n + 1) = 2T (n) (2)

This recurrence relation isO(2n) which means we will need that order of time and space.
This would be an idle curiosity except that in stack-based instruction architectures, such situations can arise. In particular,

instructions with variable-length arguments, such as call functions, have this behavior. The following grammar for handling
Python’s variable-length CALL instruction creates a non-linear set of grammar derivations:3

expr ::= c_expr | LOAD

c_expr ::= CALL | expr CALL | expr expr CALL | ...

If we encounter an instruction sequence like:

LOAD LOAD LOAD LOAD CALL CALL

we will run into such a combinatorial explosion.
The remedy to turn this back into a linear parse is simple: we add custom grammar rules. In CPython, the operand of a

CALL instruction is the number of arguments in the function. By adding only the specific forms that we see in a particular
function, we greatly reduce the number of derivations tried and the number of grammar rules.4 For example if the first CALL’s
operand said it took one argument while the second CALL’s operand said it took four arguments, we would add a grammar
rule at runtime in the instruction-massage phase:

c_expr ::= expr CALL1

c_expr ::= expr expr expr expr CALL4

Also we would modify the input instruction sequence to:

LOAD LOAD LOAD LOAD CALL1 CALL4

With this, there is just one way the sequence can be derived:

LOAD LOAD LOAD LOAD CALL1 CALL4 ->

LOAD LOAD LOAD expr CALL1 CALL4 ->

LOAD LOAD LOAD c_expr CALL4 ->

LOAD LOAD LOAD expr CALL4 ->

...

expr expr expr expr CALL4 -> c_expr -> expr

3The Python opcode names are really CALL_FUNCTION and LOAD_CONST but again for formatting purposes, we shorten them to CALL and LOAD.
4Without customization, there could be an exponential number of grammar rules.



2.2.2 Control Flow

In decompilers for compiled languages, recreating the high-level control structure has to be done fromfirst principles: creating
basic blocks by looking at instruction jumps and at instructions where jumps meet. From this, a control-flow graph can be
generated. And from the control flow graph, dominator sets can be generated. All of this is then is input to an algorithm that
reconstructs the structured control flow, such as by looking for loops and recursing into the bodies of those.
In higher-level bytecode for dynamic languages, things are not as harsh. There are often additional instructions of note

such as instructions for:

• pushing scope, or
• indicating the start of exception blocks and exception handlers, or
• instructions used only in while and for loops

Due to the reduced semantic disparity between bytecode and source code, the original control flow can be reconstructed
more closely from bytecode than when starting from machine code.
For the class of interpreters we consider, structured control flow reconstruction can largely be done by grammar pattern

matching. And in those cases when it can be done, the end result will match the source code more exactly.
An advantage to encorporating the control structure into parsing in the next step, is that it provides us with a syntax tree

that can be used in location reporting; see section 1.
When there is little or no branch optimization, e.g., changing the targets of an unconditional jump instruction that jumps

to other unconditional jump instructions, we can often come up with a grammar that does not need a control-flow graph or
dominator sets. The nesting and sequencing of compound statements follow well what grammars can track.
Early versions of Python did not have branch optimization, so their decompilers did not need much in the way of control-

flow analysis. Over time the compiler for each CPython release performedmore branch optimization. Any serious decompiler
for Python 3.6 or later will need some sort of control-flow analysis.
uncompyle6 keeps the grammar approach, but adds bracketing pseudo-instructions where needed. The first one introduced

was COME_FROM. Later the name was refined to indicate the larger compound structure, e.g., COME_FROM_LOOP.
Inspection of a bytecode’s offset is sometimes all that is needed to distinguish two similar kinds of Python constructs. For

example, a Python break statement is distinguished from a continue statement by considering the target of the correspond-
ing jump instruction. So, control-flow analysis decides which of these situations is relevant and changes a JUMP_ABSOLUTE
instruction into a pseudo-instruction, BREAK or CONTINUE.

2.3 Syntax-Analyzer Phase

As shown in the pipeline of figure 1 this phase corresponds to the Syntax Analyzer phase in a conventional compiler pipeline.
The major difference is that we must use an ambiguous grammar.

The grammar used to describe a programming language is usually unambiguous because we do not want there to be several
possible meanings for a given program. However, ambiguous grammars are appropriate for a decompiler reconstructing the
source code. In section 2.2.1 we discussed why it is useful to have a full context-free grammar, along with the issues around
ambiguity and the time and space complexity which it can incur if not handled properly.
Ambiguity in grammars can also be used simplify the grammar. It might introduce erroneous meaning, as opposed to

multiple valid meanings, but the simplification can be helpful. Handling ambiguity via operator precedence is an often-cited
use case [2].
Here we give another situation where ambiguity simplifies things, and use that to show how we choose among several

grammatically valid parses. Python offers a lot of flexibility in calling a function. It allows positional arguments and keyword
arguments.
Part of our (ambiguous) grammar rule for handling a call is:

kwarg ::= LOAD_CONST LOAD_CONST

pos_arg ::= LOAD_CONST

c_expr ::= pos_arg pos_arg CALL | kwarg CALL

For input:

LOAD_CONST LOAD_CONST CALL

By looking only at the opcode of instructions, we cannot tell whether this is a call with two positional arguments or a call
with one keyword argument. We also have to look at a flag in the operand of the CALL instruction.

We have extended the Earley algorithm parser so that it can perform checks at parser-reduction time. The technique we
use is new and is not described in the literature. We can register the callback for a rule such as:



c_expr ::= kwarg CALL

In registering, we can specify that either the callback should be passed the sequence of tokens forming the rule, or that an
syntax tree built from the sequence of tokens should be passed. The callback can then run any code to check for validity. The
parser performs the grammar-rule reduction only if the callback routine deems the reduction valid.
The details of what goes on in uncompyle6 are a bit involved, but this is the essential idea. Reduction-rule checks in un-

compyle6 also assist in disambiguating control flow.

2.3.1 Making Grammars look Similar

This may be obvious, but it is worth mentioning. At the upper levels, the nonterminal names for the AST used by the com-
piler and the (not-necessarily Abstract) syntax tree of the decompiler should be the same where possible. For example, a
programming language generally has statements, and those can be simple, e.g., assignment or call statements, or compound
statements, such as if or loop statements, and so on.
We described in section 1 that as part of the error location we can give a nonterminal name for context. Many languages,

such as Python [20] and Go [3], have AST modules which assign standard names for various constructs.
Unavoidably, though, there has to be some point at which these grammar rules differ since the end results, the source

language and the object-code language, are different.
Furthermore, when a decompiler’s syntax tree might not be “abstract” as it often is for a compiler. That is. that is all

tokens/instructions might need to be preserved in the decompiler. This too tends to distance the correspondence between the
two trees. However one could transform a decompiler’s concrete syntax tree into the programming language’s AST.
In handling multiple grammars for what is logically a single language with slight variations between versions, we can add

production rules to keep the upper levels of the syntrax tree looking the same.
As a specific example, the Python 2.6 sequence

JUMP_IF_TRUE POP_TOP

was combined into a single instruction with the opcode

POP_JUMP_IF_TRUE

in Python 2.7. So rather than have this rule for the Python 2.6 grammar:

testtrue_then ::= expr JUMP_IF_TRUE POP_TOP

and this one for the Python 2.7 grammar:

testtrue_then ::= expr POP_JUMP_IF_TRUE

we have a single rule for Python 2.6, 2.7, and others:

testtrue_then ::= expr jmp_true

with the corresponding rules for jmp_true, e.g., for Python 2.6:

jmp_true ::= JUMP_TRUE POP_TOP

and for Python 2.7 the singleton rule:

jmp_true ::= POP_JUMP_IF_TRUE

Although this adds levels to the generated tree, it simplifies semantic actions. For example, in the Python grammars
jmp_true is also used in this rule:

assert ::= assert_expr jmp_true

LOAD_ASSERT RAISE_VARARGS_1 come_froms_pop

By using a single nonterminal here rather than one or two terminal symbols depending on grammar version, the ordinal
position of LOAD_ASSERT is kept the same. The semantic actions need to pull out the attribute of that instruction, and having
a fixed location of it helps. So, just one set of semantic-action routines largely covers all grammars.

2.3.2 Syntax-tree-building Notes

Syntax-tree building pretty much matches the corresponding action in a conventional compiler. Below we give some notes
of things we have encountered. Some of these may be obvious to someone familiar with the corresponding action in a con-
ventional compiler.

To reduce the depth of the tree, we remove singleton derivations between nonterminals. The semantic actions are aware
of this. We handle operator precedence using a table of priorities.
Another syntax-tree simplification is to mark certain nonterminals as being list-oriented. When the tree builder is building

nodes for these, it appends them to a list; for example:



stmts -> [stmt, stmt, stmt]

rather than creating a chain such as:

stmts -> [stmts, stmt]

|

+--> [stmts, stmt]

|

+--> stmt

There is another, practical side to this. Since the AST is traversed recursively, the list can be traversed more efficiently by
iterating over a list, and we save on stack space. Without this, the decompiler would die on a program with thousands of
statements.

2.4 Macro Unexpand Phase

Some languages like C or Lisp allow macro expansion. Some perform macro-like expansion via generic-function inlining. In
our pipeline, at this stage we have an AST whose upper levels resemble the corresponding AST from the source code after
any macro-like expansion. Undoing macro expansion is easier at this higher level than at the level of VM instructions.
Other high-level source-to-source types of translations can also be done here. Some examples are un-inlining code or

deciding which of two equivalent high-level constructs can be used.
In languages that use some kind of macro expansion, information relating what is expanded and where is usually not saved.

But as a general rule, macros expand rather than contract, and the macro expansions that a programmer often most cares
about are the ones that expand a great deal. Therefore any process that shortens the result will probably be beneficial, whether
or not it was initially used.
For limited macro-expansion systems like the C preprocessor [35], inverting the search and replace is, in theory, reversible:

we can swap the search pattern with the replacement pattern. Furthermore, the reversing process can be generated automat-
ically; that is, a system can be devised to look for a set of macros that are either found in the program or are typically used,
and from this it generates the reversing macros and applies the reversing macros iteratively. If we apply a reversing macro
only where the result yields something shorter, the processes will terminate after a finite number of iterations. Otherwise we
can put a limit on the number of applications.
In more general macro-expansion systems, such as those for Common Lisp, undoing expansion may be impossible. But

even here, there are often many cases where a simple search and replace would be helpful.
Further research on specific effective techniques and transformation systems for this phase may be in order. However there

is a body of work and literature on program transformation systems.
In figure 1, this phase corresponds to Code Optimization in a conventional pipeline. The difference is that we are working

from an AST rather than from some intermediate representation. Simpler compiler pipelines, where there is no IR or separete
code-optimization phase, combine the last three boxes so that they resemble the decompiler’s Source Code generator phase.

2.5 Source-Code Generator Phase

This is the last phase in our pipeline. Just as you might have compiler options that influence the kind of code that gets
produced, something similar is true in a decompiler.
In uncompyle66 the kinds of “code generation” variations we have are whether:

• we just want text for the entire program, versus
• want offset and fragment information for tracking locations

Even if we just want text, there are variations related to the style of output. The Python community is generally strict about
acceptable formatting, but the C and Perl communities are more loose about where to put braces and how many spaces to
indent per level.
Contemplated future "code generation" variations are whether to generate a Python AST, and how well to try matching

line numbers from the line-number table.
Leaving code-generation options aside, although we list it as equivalent to the Object Code generator phase, is possibly

more similar to the Intermediate Code generator in that there is a syntax-directed translation from the syntax tree.
As mentioned in section 2, we do not have to use all the pieces of the syntax tree, but only enough to recreate the source.

(In this sense the tree created from instructions is not all that abstract: in contrast to a conventional AST for a high-level
language, few if any of the input tokens or instructions have been discarded.)



In any compiler that maps high-level constructs (i.e., more abstract, and thus shorter, sequences) onto longer, lower-level
constructs, we expect that there will be places where a token value might appear several times within the lower-level instruc-
tion sequence. To reconstruct source code, the decompiler needs to find any one of those places in the instruction sequence
and can assume without checking that all other places will be consistent with that.
Here is an example. Suppose we have a loop that iterates over variable i. There may be code to initialize i before entering

the loop and another instruction to increment the variable i. But in the source code the variable i appears only once:

for i in range(10):

print(i)

This particular situation does not occur in Python, but duplication occurs in other complicated ways. Specifically, func-
tion information can be obtained from either part of Python’s code structure for that function or from the instructions that
dynamically create the function.

3 Debugging Optimized Code

There are difficulties in debugging code that has been optimized. This is a problem which has long been recognized, and there
is no universally accepted approach. While what we describe here is not a full solution, in practice we find it useful.
The difficulties arise because a really good optimizer will scramble the program so that a one-to-one mapping between

instructions and source-code constructs occurs less often—source-code instructions might be moved around, duplicated, or
eliminated. On the other hand, an instruction might correspond to several different places in the source code all at once, or
an instruction might represent an aspect of execution that is implicit in the program and therefore has no corresponding text.
Stack clean-up on leaving a block of code is an example of this. (We cannot associate this with the end terminator for the
compound statement, for example, because Python does not have such a text construct, and a single newline can close several
compound statements.)
Debuggers can be complex, so it is understandable that most debuggers do not delve into the optimization steps.
Here is a canonical tricky problem in debugging optimized code. Suppose the source code looks like this:

if condition then

# some unconditional code

a := x / z

else

# some more unconditional code

b := (x / z) + 2

end

and suppose an optimizing compiler decides it is safe to rewrite this as:

t1 := x / z

if condition then

# some unconditional code

a := t1

else:

# some more unconditional code

b := t1 + 2

end

Suppose we get an error in the hoisted code, specifically a divide-by-zero error in evaluating x / z.
If we try to figure out what went wrong, we are probably trying to assess why z is zero. We really do not care about all the

code after the t1 assignment in the hoisted code. In fact, it is helpful to know that we can simply ignore those things. What
we are interested in is how t1 got its value, and that is exactly what is shown in the decompiled code.

The assignment to t1might look like a puzzle since we did not write t1 anywhere. It would be nice if optimizers logged the
transformations they perform in a programmer-friendly way, so we would know that this code was hoisted. Unfortunately,
no optimizer in widespread use does this in a way that is accessible to a programmer at runtime when an error is encountered.
But if we had this information, a decompiler could help. It has a parse tree of the source code, so it could feed the source

code or AST to some sort of code comparison analyzer which also has access to the original source.
Programmers typically perform these steps consciously or unconsciously when debugging optimized code. They do a

mental decompilation to understand what the program was actually doing. We have just assisted a step by turning what
might be an unfamiliar language—bytecode or machine instructions—into a familiar programming language.



In other words, one way a computer can assist debugging optimized code is to describe what is there as simply and naturally
as possible. Then come the additional steps of untangling or explaining the transformations.
We believe that if we present the code simply, the way the computer sees it, and if we have reference to the original source

code, we will be able to understand why the two are equivalent. And in some cases, we might decide to rewrite the program
along the lines of the transformed program.
As an example, for the following Python code:

if x:

return x

else:

return f(x)

whenwe use uncompyle6 to decompile the bytecode produced by the CPython interpreter, equivalent source code is produced:

return x or f(x)

We may decide we like this formulation better. On the other hand, if we had started with:

JUMP_ABSOLUTE = 100

...

if op == JUMP_ABSOLUTE:

this deparses to:

if op == 100:

Here we probably want to keep our original formulation, as it was intentionally more verbose for clarity and flexibility.
The kinds of peephole optimizations done by the Perl interpreter are often undoable and the Perl decompiler makes the

reverse transformation when it can. In Python some reversable peephole optimizations can be covered by additional grammar
rules.
However when an optimization simplifies code, that transformation is not reversable. An example of this in Python is

where this code:

if 1:

statement

gets simplified in bytecode to:

statement

Given the line number associated with the original source code, which is often in the bytecode, sometimes we can infer
what transformation the Python interpreter made. In the above example, Python might leave around dead code or a NOP

instruction which has the line number where the if 1 was removed.
In contrast to this simple approach using decompilation, most of the other approaches to debugging optimized code in-

volve changing the compilation system to include additional information. Again, this can be an adjunct to decompilation
information.
Our experience is that debugging optimized code using decompilation is a big improvement over the alternatives.

4 Adapting to Perl and Emacs Lisp

Previously we have largely talked about decompilation in the context of the C Python interpreter. How do things change for
other dynamic languages? That is what we briefly describe here.

4.1 Perl

Perl5’s interpreter is tree based, which eliminates the disassembly and parsing steps in Figure 1. Distributed with Perl is a
decompiler module called B::Deparse. Interestingly, that code does make an initial pass over the tree to make the code more
amenable for decompilation to source code. As described in the comments, the code is tries to reverse certain kinds of compiler
optimization.
Adapting the source-code decompiler to handle fragment information such as would be useful to show positions at runtime

was a serious challenge. That decompiler is a single package, single file containing 6.5K lines. It is maintained between Perl
releases by copying the file and modifying it. Since I want to have a revised package working across multiple versions of Perl,
it is necessary to split the code up, if for no other reason than to segregate version-specific code from version-independant
code.



Even focusing on a single Perl release as was initially done, there were still some challenges. Perl’s optree nodes tend to be
somewhat general and these few are grouped by how many children the node can have: 0, 1, 2 or an arbitrary list.[34]. Each
kind of optree node then is expected to handle a number of PP (push-pull) opcodes, and there are a large number of opcodes
partially because Perl has a lot of built-in functions and many of these are opcodes.
The overall effect is that a lot of information is buried inside flags and fields inside the node and other pointers off of that

node. For example a tree node may contain a reference to variable which itself has flags indicating the class of variable, e.g.
scalar, code, array, scalar or hash, its scope, and its name. As a result, the number of lines of code for basic routines, “unop”,
“binop”, “listop”, and for handling subroutines calls “entersub” are quite large since they have to handle a vast number special
cases. To handle many of the opcodes, there is a simple set up of a few parameters like the name of the op and its operator
precedence, before calling a generic routine.
So instead of writing hundreds of subroutines like this:

sub pp_die { listop(@_, "die") }

sub pp_each { unop(@_, "each") }

sub pp_egrent { baseop(@_, "endgrent") }

we took a lesson from the Python decompiler and added table-driven composition. So the above become the following entries
in a hash table:

'die' => 'listop',

'each' => 'unop',

'egrent' => ['baseop', 'endgrent'],

By doing this, it is more apparent that in contrast to the first two entries where the opname is exactly the same as the Perl
name used, that in the third entry, the opname is slightly different.
Another thing that complicates understanding and modifying the code, is a lack of clear separation between gathering

information from child nodes from how those get combined into the end result for that node. Instead, strings are built up
on the fly and combined holistically while traversing. As a result of loss of structural information while traversing the tree,
the code sometimes uses string searching on the partial string fragments in order glean certain structural properties. One
example of this is looking at the string to see if it starts and ends with a parenthesis in order to determine if the expression was
parenthesized. Another example is adding control characters to the result string as a sentinal indicating statement boundaries.
In order to track fragments, we needed to better separate traversal with fragment composition. So sprintf-like format

specifiers assists in separating composition from data-gathering. As was done in the Python decompiler, additional format
specifiers were added to work off of tree node information. See [11] for more details on the challenges and solutions.

4.2 Emacs Lisp Bytecode

A decompiler for Emacs Lisp Bytecode is particularly useful, since the bytecode format is particularly lacking having any sort
of association table mapping between source-code and the bytecode. (This is often referred to as a “line-number table”).
Since both the underlying language and bytecode language are simple and regular, the grammar to construct a parse tree

from the bytecode is particluar simple compared to Python. It is also highly ambiguous, so the techniques mentioned above
for speeding up ambigous grammar parsing are needed even more here.
There is one new aspect that is peculiarly absent from the Python decompiler: tracking stack usage. Accounting for this in

a grammar alone greatly increases grammar ambiguity.
What is currently contemplated is mark basic block with the additional property concerning whether they consume, pro-

duce or are neutral with respect to creating stack entries.

5 Mechanics

5.1 Code Reduction

A big challenge in the Python decompiler code base is maintaining it as new releases come out. Right now there is a new
Python release about every year, and the code currently supports about 15 releases. Often, both the programming language
and bytecode change.
It is desirable to store changes as sets of differences rather than as fully independent code for a number of reasons:

• Changes in opcodes mean changes in grammar rules, and using differences makes the correspondence clearer; similarly
. . .

• Changes in grammar can lead to changes in semantic actions.



• When a bug is found, naturally it is found a particular release. Tracking the differences facilitates understanding what
other releases may be affected.

• Noting the differences between releases aids in writing other tools. For example, we found that whenwriting a bytecode-
to-bytecode converter totally independent of the decompiler, it was helpful to have the version-to-version differences
listed.

uncompyle6 handles this via Object Oriented subclassing. The base class is not the earliest version of Python. Instead we
use some middle version for each of the Python 2 and Python 3 releases and work from that.
Usually changes are small, but not always. Because Python 2 is very different from Python 3, the base classes are different.

There is some overlap, so overlap code is duplicated. We have a way to dump the full grammar for any given Python release.
Therefore if we want to rebase which base class to start with, or want to create an additional base to hang Python releases
from, we can.
Whenever we work with differences, we need a way not only to add things, but also to remove things. As a result, although

a bit unusual, we have extended the Earley algorithm parser so that it can remove grammar rules.

5.2 Testing

As any compiler developer knows, testing is important. It is also generally time consuming since a lot of data or programs
need to be tested and the compilation process is usually not very fast.
We use common-practice techniques for testing, some of which are often used in software engineering but need a little

adaptation for compilers. Some techniques that are in common use in compiler development also require adaptation.
Since running a full test suite takes a long time, we run quick unit tests first. These target specific bits of code precisely, so

when they fail we generally know what isolated section of code to look at and fix.
As a practical trick to speed up testing, we use three free (for open-source projects) continuous-integration services: Travis,

CircleCI and Appveyor. These help with running massive regression tests in parallel. Travis can cover many different Python
releases which are run in parallel, but only a limited number. On CircleCI we do massive testing of a single release using the
full installed Python system library. Appveyor handles testing on Microsoft Windows. All of these CI services support more
parellelism for a fee.
Another testing technique from software development is measuring code coverage. In uncompyle6, some of the “code” is

grammar rules, so we have extended the parser system to record which grammar rules were used in the reduction, and that
is how we test grammar coverage. As mentioned above, rules get pulled in via subclassing, and looking at grammar coverage
has been helpful in deciding what additional tests are needed, which rules should go where in the class hierarchy, and which
rules to remove. By comparing unused grammar rules across consecutive Python versions, and taking into account grammar
rules added between them, we can glean the bigger picture of how code generation has changed between Python releases
without having to look at the Python compiler source code.

A common testing technique used especially in compiler testing is round-trip testing, or performing some series of trans-
formations which should lead back exactly to the starting point. Applied here, round-trip testing starts from bytecode, not
source code. Thus the round trip is to decompile bytecode, compile the result and then check against the original bytecode,
allowing for some fuzzing.
For early versions of Python where there is no optimization, this works well. However for later versions of Python this

works increasingly poorly. But doing only two-thirds of the round trip will still find errors: decompile bytecode, compile
source code. In the second step, compiling source code, we often find errors because the source code we produce is not valid.
For the limited set of programs that we know will “round trip” successfully, we test starting with bytecode.
In Python, as in other large systems, there already is a test suite for checking the distributed library code. Since those

programs are self checking, those programs too can be decompiled and run.

6 History

Decompiling is not a new idea. Cifuentes’ Ph.D. thesis indicates that it goes back at least 55 years. Most of the research on
decompilers focuses on compiled and statically typed languages.
The Python code base spans 15 versions and goes back almost 20 years, and through that long period there were a number of

anonymous maintainers. In a language like Python, there is a lot of churn from version to version and keeping the decompiler
up to date is a bit of a challenge. In section 5.1 we describe how to deal with this issue.
The earliest authors and developers of the Python decompiler werewell versed in compiler technology, but latermaintainers

of the code, less so. As a result there were hacks and patches that would have been better done within the framework of the
parsing technology rather than ad hoc. Broader documentation and education was a motivation for this paper.



Like Python, a decompilation package for Perl [31] goes back almost 20 years. However, the decompiling techniques in the
decompilers for these two dynamic languages are very different. Perl5’s evaluator is tree based. This makes decompilation
easier: no parser is needed to build an AST since that is already in place. Also, there has been less change from release to
release of the instructions over the course of Perl’s 30 years or so. Decompilation in Perl in B::Deparse is more ad hoc than in
Python. I have made a stab at refactoring it and its tests, with an eye towards better making a clearer separatation of pipeline
phases[7].

7 Comparison with Other Work

The idea of using decompiling for better location reporting arose from discussions with the Perl community, but the imple-
mentation is new. We describe related work and ideas in section 1.
Decompiling technology is not new in either Perl or Python, but using it to find a more precise location at runtime, say in

a debugger or in a stack trace, is. In order to do this we need to keep around associations from offset to text fragments, in
addition to the other information. What was a batch process is now an online process. For Perl, see [7]. The parse tree for the
functions that are contained in the call stack are kept, to give parent context for the fragment in question.
Also somewhat novel, at least for Python, is improving technology and testing to track the changes in the language and its

bytecode over their long and variable history.
The overall dynamic decompilation structure given in section 2 is embodied in John Aycock’s Python decompiler. This

includes massaging the token stream to facilitate grammar parsing, and adding custom grammar rules for each function.
However there is no discussion in the literature of why this is important, as in section 2.2.1 above. The decompiler pipeline
is also used in an Emacs Lisp decompiler [10].
Section 2 compares the proposed pipeline with a conventional compiler pipeline. It is a little different from the “standard”

decompiler pipelines described byMichael James Van Emmerik in his Ph.D. thesis [17]. Our focus is on dynamic, not statically-
typed and interpreted, languages which somewhat simplifies and changes things.
Van Emmerik’s diagram on page 62 shows a decompiler pipeline as a compiler pipeline in reverse, rather than being just

a different kind of compiler with correspondences in the forward direction. The diagram on page 61 looks similar to ours
especially in noting that the first step is loading and disassembly. However the next three middle IR steps are different, and
are similar to other decompiler pipelines [16].
The pipeline in Cifuentes’ Ph.D. thesis has labels that make it look remarkably like ours and a conventional compiler’s.

However her first 3 steps refer to assembly-language parsing. In our diagram we lump these under “disassembly,” and con-
ventional disassemblers do not resemble compilers in how they work. Like Van Emerik, Cifuentes works from an IR. The
decompilers we have used do not use an IR, although we do classify instructions into Python-release independent categories,
extending what is already provided by the Python opcode library [21]. (The bytecode itself is already an IR.)
Instead of an IR, there is simply an augmented or modified sequence of instructions. This is then fed into a parser for

syntax-directed translation which does most of the heavy lifting. That is a key difference between the decompiler we propose
and those described in the literature or available software [15, 16, 22]. The benefits we gain from using conventional compiler
technology are the same benefits gained in a conventional compiler, namely that we are using domain-specific languages
which clearly represent the problem.

We use an Aycock/Horspool [5] implementation of the Earley parser. It is customizable at runtime per function and has been
extended to handle selection of rules caused by the ambiguity of the grammar in a way that is convenient for decompilation.
Adding precedence rules to handle operator grouping ambiguity statically is well known. Other ways of handling ambiguity
at runtime or based on the input sequence are non-standard and less well known.
There are a number of other fast and general context-free grammar parsers that could be used. Marpa [26] is one, and it

also has a means for handling ambiguity. Another interesting parser generator is Nez [27, 30]. It has parsing conditions that
can be used instead of those described here. Its AST constructions might be useful in macro unexpansion.
Debugging optimized code has a long history; there is no definitive solution [23, 36]. Approaches described in the literature

are to add side information which a debugger can use, and perform work at runtime to unscramble the code. The approach
we suggest here is different and simple: be transparent about the code and translate it back into a language familiar to the
programmer. This is not a complete solution to debugging optimized code. However, it does separate the boring and tedious
parts that a programmer currently has to perform from the higher-level de-optimization transformations that may require
a human. And in contrast to most of the proposals in the literature, it can be done without any changes to the optimizing
compiler.



8 Summary

We introduce the idea of using decompilers to show the location of a program at any given time, and we suggest that decom-
pilers can be used in runtime error analysis, stack traces, and debuggers, even when the code has been optimized.
Next we present the design of a decompiler for dynamic interpreted languages. It is much like that of a conventional com-

piler, possibly simpler. In contrast to the decompilers for statically-typed compiled languages, a syntax-directed translation
using an ambiguous grammar is desirable for interpreted dynamic languages.
We describe why with an analogy to human translation. And this analogy suggests an avenue of research that might be

fruitful: use Natural Language Processing techniques for examining a large body of (virtual) machine instructions, along with
an AST derived from the corresponding source code, to come up with initial grammar rules for a deparser.
After the discussion of issues around using an ambiguous grammar, we discuss the day-to-day issues of testing.
We hope that this paper serves to popularize decompilers for dynamic languages and encourage their proliferaion. These

additional decompilers can be used to reduce the ambiguity of error reporting and assist in debugging optimized code. There
is still much to do.
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